If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+^2-6X-40=0
We add all the numbers together, and all the variables
X^2-6X=0
a = 1; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·1·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*1}=\frac{0}{2} =0 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*1}=\frac{12}{2} =6 $
| 3x^2+27=27 | | 4x+5=(x+1)(x+2) | | 7(11+b)+16=16 | | 65=14.6x-13 | | (7x)+34=90 | | Y=4x+3Y=2x-5 | | 6x+7=8x-18 | | -4(v-12)-4=32 | | 3x+142=180 | | 3(x-2)+10=2(x-5) | | -5=7(d-11)-d | | 3x+4-x=5x-10-x= | | (6y+4)(3y-5)=2y-3 | | 4v+3(v-2)=64 | | -5(x+4)=-2(2x+1)= | | -17r+16r—15r-6r=8 | | c-c(=6) | | 9x-1=-x+49= | | -34=-5(c-6)-9 | | 3x+1=6x+1= | | 4(x-2)-8=4+2x | | 5+16w=6w+45 | | 3x-5=3x+5= | | -12=4b-7b | | -6=5w-4w | | 11x+3=3x+35= | | 30=10(x+4) | | 7x+3=9x-3-2x= | | x*x+8=48 | | 74=-10(2+s)-6 | | X^29x+20=20 | | (3x+1)+(2x+4)=180 |